

Intelligent Energy Management System Simulator for PHEVs at a Municipal Parking Deck in a Smart Grid Environment

Preetika Kulshrestha, Student Member, IEEE, Lei Wang, Student Member, IEEE, Mo-Yuen Chow, Fellow, IEEE and Srdjan Lukic, Member, IEEE North Carolina State University Raleigh, NC

- Introduction
- System architecture
- Component description
- System simulator
- Sample system simulation
- Future work

Optimization of power delivery - Capacity to deliver efficiently, reliably and intelligently

Features

- Decentralization of control
- Services customized to user's needs
- Use of energy efficient systems
- Rapid reconfiguration

Intelligent Energy Management System Simulator for PHEVs at a Municipal Parking Deck in a Smart Grid Environment

- HEV with larger battery pack
- Can be charged from standard wall outlet
- 40 mile all-electric range (Chevy Volt)

Benefits

- Reduction in GHG emissions
- Reduction on oil dependence

• Lower cost

A cluster of vehicles is a controllable load for the grid

Opportunities

- US fleet's 176 million light vehicles = power capacity of 19.5TW= 24 x power capacity of the electric generation system.
- PHEV penetration by 2050 62% of the US fleet (EPRI prediction)

Challenges

- Potential load of 1000 cars => 4 MW load
- Potential dangers => Voltage instability and blackouts
- Infrastructure
- Need of an underlying framework to enable PHEV integration

A Solution

Intelligent Energy Management at a Municipal Parking Deck

NC STATE UNIVERSITY

- J. Tomic and W. Kempton, "Using fleets of electric-drive vehicles for grid support", *J. Power Sources*, vol. 168, issue 2, 2007
- M. Duvall and E. Knipping, "Environmental assessment of Plug-in Hybrid Electric vehicles", EPRI, July 2007
- Hutson, G. K. Venayagamoorthy, K. A. Corzine, "Intelligent Scheduling of Hybrid and Electric Vehicle Storage Capacity in a Parking Lot for Profit Maximization in Grid Power Transactions", *in proc. IEEE Energy2030*, Atlanta, GA, 2008
- S. B. Pollack et al, patent title "User interface and user control in a power aggregation system for distributed electric resources", IPC8 Class: AG01R2106FI, USPC Class: 702 62
- GridPoint: <u>http://www.gridpoint.com/</u>

System Architecture

Smart Charging Station Overview

NC STATE UNIVERSITY

Information Flow

Intelligent Energy Management System Simulator for PHEVs at a Municipal Parking Deck in a Smart Grid Environment

System - Component Description

System - Component Description

States

- Communication: Inform the loads of power allocated/listen for signals
- Optimize: Calculation of power allocation when:
 - There is a change in utility power.
 - A load has plugged-in/out.
 - Periodically, after sampling the instantaneous power consumed by loads.

ADAC

Utility Agent

Functions

• Periodically inform the iEMS about the power available and pricing information

iEMS - System Simulator

ADAC

Sample System Simulation

Objective function:
$$\max_{p} J(k) = \sum_{j} \sum_{i} w_{i}(k) SoC_{i}(k+j)$$

 $w_i(k)$: the priority assigned for to vehicle *i* at time step kPriorities are assigned based on capacity required and time remaining

Simulation Parameters

State of Charge at plug-in: Uniform random number between 10% and 75%

Time of Availability: Uniform random number between 0.5 and 2 hours

Time of Plug-in: Uniform random number between 0 and 2 hours

Simulation Run Time: 4 hours

Battery Capacity: Uniformly distributed between 6 Ah and 15 Ah

Number of times the simulation was run for each algorithm: 100

	Optimal Allocation	Dynamic Priority	Equal Priority
	for SoC Maximization	Allocation	Allocation
Percentage of vehicles leaving with SoC 55% or higher	81.8% (409)	69.6% (348)	67.6% (339)
Number of vehicles leaving with SoC 35% or lower	2	32	40
	0.4%	6.4%	8.0%

- This paper proposes an iEMS for managing power at a parking deck
- System components, functions and behavior are outlined
- A simulator (test-bed) is developed to simulate the real world scenario
- The simulator will contribute towards evaluation of varied scenarios and iEMS algorithms
- Optimization on a chosen objective is formulated and simulation results presented

- Exploration of different objectives for optimization
- Extension of the problem to multi-objective optimization and incorporation of additional constraints
- Network in the Loop iEMS performance evaluation with communication delay, packet drop, and signal strength
- Decision on optimal sampling time
- Extension of the concept to distributed control
- Real world implementation and demonstration of the iEMS

This work was partially supported by the National Science Foundation (NSF) under Award Number EEC-08212121

THANK YOU!