In an era where climate-driven disasters and energy disruptions are becoming more frequent and severe, building a power grid that is intelligent, resilient, and adaptive is no longer a luxury—it’s a necessity. Conventional, centrally controlled energy systems often fall short in times of crisis, struggling with rigidity, bottlenecks, and single points of failure.
At ADAC Lab, we are pioneering the Hierarchical Collaborative Distributed Energy Management System (H-CoDEMS)—a cutting-edge framework designed to revolutionize how microgrids operate and coordinate. H-CoDEMS adopts a self-organizing, hierarchical architecture that enables scalable, fast, and resilient energy management across distributed energy resources. By leveraging situational awareness and a distributed consensus-based control strategy, H-CoDEMS allows microgrids to make intelligent, cooperative decisions in real time. This makes it exceptionally effective in a range of critical applications:
Disaster Relief: Rapidly restores power to essential services such as hospitals, emergency operations centers, and communication networks, even when centralized infrastructure is compromised.
Networked Microgrids: Enables seamless coordination and reconfiguration across interconnected microgrids, enhancing resilience and operational efficiency.
Virtual Power Plants (VPPs): Coordinates distributed energy resources to act as a unified, flexible grid asset, improving reliability and grid balance.
To address the challenges posed by faults in Battery Energy Storage Systems (BESS), the ADAC Lab has developed advanced monitoring and fault detection solutions.
We have developed a comprehensive Battery Incipient Fault Detection and Diagnosis (BIF-DD) Platform, which utilizes real-time monitoring and advanced algorithms for early fault detection and root-cause diagnosis. This platform, implemented on a Raspberry Pi, performs parameter identification to visualize battery fault statuses based on data from a Battery Fault Simulator.
Current Developments:
The platform is continuously evolving with the following enhancements:
Expansion to Multiple Fault Types: The system is being expanded to detect a broader range of faults, enhancing the comprehensiveness of the BIF-DD platform.
Integration with AI and Big Data: We are integrating advanced AI technologies and large-scale models to further improve fault prediction accuracy and system intelligence.
Connection with Power Systems and Microgrids (MGs): The platform will be linked with power systems and microgrids, enabling real-time communication of BESS status for optimized energy dispatch and grid management.
Through these advancements, the BIF-DD platform is poised to provide a robust solution for proactive BESS maintenance, ensuring safe, reliable, and efficient energy storage operations.
Publications:
[1] Ziqi Wang and Mo-Yuen Chow, “Battery Modeling of SEI and Metal Dendrite Growth: A Transmission Line Circuit Framework with Genetic Algorithm-Identified Parameters ,” 2025 IEEE 20th Conference on Industrial Electronics and Applications (ICIEA).(accepted)
[2] Skieler Capezza and Mo-Yuen Chow, “Real-Time SOH Estimation via Online Identification of Temperature and SOC Dependent Electric Circuit Model Parameters,” in IECON 2025- 51st Annual Conference of the IEEE Industrial Electronics Society, 2025.(accepted)
[3] Junya Shao, Mo-Yuen Chow, Zhiping Tan and Huiqin Jin, “Solid Electrolyte Interface Growth Fault Modeling for Battery State of Health Simulation,” 2025 IEEE International Conference on Industrial Technology (ICIT), Wuhan, China, 2025, pp. 1-6, doi: 10.1109/ICIT63637.2025.10965289.
[4] Ziqi Wang, Mo-Yuen Chow, Zhiping Tan and Huiqin Jin, “Modelling of the Solid Electrolyte Interface Growth Using Physics-Based Equivalent Circuit Model,” 2025 IEEE International Conference on Industrial Technology (ICIT), Wuhan, China, 2025, pp. 1-6, doi: 10.1109/ICIT63637.2025.10965250.
Intelligent Space (iSpace) is a relatively new concept to effectively use distributed sensors, actuators, robots, computing processors, and information technology over communication networks. iSpace is a large scale Mechatronics System by integrating sensors, actuators, and control algorithms in a communication system using knowledge from various engineering disciplines such as automation, control, hardware and software design, image processing, communication and networking.
Typically, the distributed energy resources (DER) are controlled by the utility distribution management system (DMS) or DER management system (DERMS). If hosted by microgrid, the microgrid energy management system (MG-EMS) will be added between the DMS/DERMS and DERs. This type of top-down hierarchical control chain is heavily constrained by the communication latency, quality, bandwidth, and availability. These systems are not positioned to embrace the DER boom and will be a bottle-neck for undergoing DER integration. The solution to the scalability is decentralization. Current academic and industry efforts are made to push control to the “edge”, namely on on-site DERs. With built-in edge autonomy in DERs, they can seamlessly work together and the system becomes more scalable. Another downside of the conventional centralized control scheme is the lack of resilience against natural and man-made disasters. The typical industry practice for resilience is by adding redundant central controllers. However, this redundancy is expensive yet cannot rapidly restore electric service in parallel. Therefore, the distributed control technologies have attracted significant academic and industry attention in recent years. Our lab has been developing distributed EMS, called Collaborative Distributed Energy Management Systems (CoDEMS), since 2008.
Publications:
[1]Z. Cheng, J. Duan, and M.-Y. Chow, “To Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems,” EEE Ind. Electron. Mag., vol. 12, no. 1, pp. 6–24, Mar. 2018, doi: 10.1109/MIE.2018.2789926.
[2]N. Rahbari-Asr, Y. Zhang, and M.-Y. Chow, “Consensus-based distributed scheduling for cooperative operation of distributed energy resources and storage devices in smart grids,” IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1268–1277, Apr. 2016, doi: 10.1049/iet-gtd.2015.0159.
[3]Y. Zhang, N. Rahbari-Asr, J. Duan, and M.-Y. Chow, “Day-Ahead Smart Grid Cooperative Distributed Energy Scheduling With Renewable and Storage Integration,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1739–1748, Oct. 2016, doi: 10.1109/TSTE.2016.2581167.
The microgrid is envisioned to be the building block of the future smart grid, for its abilities to host distributed energy resources, to improve grid reliability, and to enhance system resiliency. One of the most studied research topics of the microgrid is the distributed microgrid energy management system. However, the algorithm prototyping and hardware validation still remain great challenges at the current stage. Our lab has been developing a highly scalable, customizable, and low-cost DC microgrid testbed framework that enables fast distributed MG-EMS prototyping and provides proof-of-concept validation.
Publications:
[1]Cheng and M. Chow, “The Development and Application of a DC Microgrid Testbed for Distributed Microgrid Energy Management System,” IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, 2018, pp. 300-305, doi: 10.1109/IECON.2018.8591816.
The First Principle Based Four Dimensional Battery Degradation Model (4DM) is computer simulation model for battery dynamics studies under different degradation and operating conditions. The 4DM is designed based on the physics of operation of the battery, i.e., the actual components such as anode, cathode, electrolyte, separator and current collector, are used to construct the model. This particular approach is used to bridge the gap between material science, electrochemical and electrical engineering.
The 4DM, because of the design, is capable of simulating:
different battery chemistries,
batteries of different capacities,
progressive component degradation,
different operating conditions – C-rates, temperatures, depth of discharge, partial charging and discharging effects,
component degradation over time.
The 4DM provides a platform to study the sensitivity of the battery’s rate of change of voltage and capacity with respect to the degradation of different physical and electrochemical components. This feature/capability of the 4DM enables users to better understand the impact of different operating conditions on the degradation of their battery and determine appropriate use cases for their batteries to prolong the remaining useful life.
The 4DM has an intuitive user-interface that assists the user to perform different tests on the model under different operating conditions. The user interface is designed to be simple, yet intuitive and capable of providing the user with sufficient options to understand the working of the 4DM with access to the core back-end tool with all the features.
Kelola interaksi pelanggan secara efisien lewat sistem CRM MTP di KAYARAYA, yang dirancang untuk menyatukan data dan strategi dalam satu dasbor cerdas.